NC STATE UNIVERSITY

EFRC TUTORIAL

Part II:

Excitons in 2D TMDC Materials

Linyou Cao

Department of Materials Science and Engineering, North Carolina State University

Temple University, July 29. 2016

2D TMDC Materials : A Remarkable Excitonic System

LEDs

Lasers

Integrated Circuits

Chemical/bio Sensors

Photodetectors

Key: Fundamental Understanding

Unique Physical Features \rightarrow Exotic Excitonic Properties?

Strong exciton binding energy

Strong many-body interactions

High susceptibility to substrate effects

Dominating excitonic effects in light-matter interactions

Efficient interfacial transfer

Overview

1. Excitonic States, Binding Energy, Exciton Radius

2. Many body interactions (Coulomb scattering)

Exciton-charge, exciton-exciton

3. Effect of substrates

4. Exciton dynamics

5. Dominating excitonic effects in light-matter interactions

Excitonic States

A and B from interband transtion of K/K' points, and C from transition in the Brillouin zone between Γ and Λ

Extraordinarily Strong Binding Energy

	Energy cutoffs	k point	E_g	E_g (optical)	Binding energy
Monolayer MoS ₂ (3.160 Å)	400 and 200	$6 \times 6 \times 1(SOC)$	2.89	1.87	1.02
• • •		$6 \times 6 \times 1$	2.99	1.96	1.03
		$9 \times 9 \times 1$	2.84	2.08	0.76
		$12 \times 12 \times 1$	2.78	2.16	0.62
		$15 \times 15 \times 1$	2.76	2.22	0.54
	600 and 300	$12 \times 12 \times 1$	2.80	2.17	0.63
Monolayer MoS ₂ (3.190 Å)	600 and 300	$12 \times 12 \times 1$	2.66	2.04	0.62
Monolayer WS ₂ (3.155 Å)	400 and 200	$6 \times 6 \times 1(SOC)$	3.02	1.97	1.05
		$6 \times 6 \times 1$	3.28	2.21	1.07
		$9 \times 9 \times 1$	3.12	2.34	0.78
		$12 \times 12 \times 1$	3.06	2.43	0.63
		$15 \times 15 \times 1$	3.05	2.51	0.54
	600 and 300	$12 \times 12 \times 1$	3.11	2.46	0.65
Monolayer WS ₂ (3.190 Å)	600 and 300	$12 \times 12 \times 1$	2.92	2.28	0.64

The exciton binding energy in 1L MoS2 is reported ~ 0.4-1.1 eV (0.4-0.6 eV more reasonable)

Strong Binding Energy in WS2

The exciton binding energy in WS2 monolayer is 0.71 ± 0.01 eV around K valley

Exciton Radius

Phys. Rev. Lett. 111, 216805

The exciton radius is estimated to be 0.5-2 nm

Anisotropy: Fractional Dimensional Space

Conventional materials: Isotropic

2D TMDC materials: Anisotropic

How should the concept developed for isotropic systems be adjusted for the extremely anisotropic excitons in 2D TMDC materials?

Fractional dimensional space model

$$\alpha = (E_{\text{bulk}}/E_{2D})^{1/2}+1$$

- X.-F. He, Physical Review B **42**, 11751 (1990).
- C. Tanguy, Physical Review Letters **75**, 4090 (1995).
- C. Tanguy, P. Lefebvre, H. Mathieu, and R. J. Elliott, Journal of Applied Physics **82**, 798 (1997).

Many-body Interactions

- Exciton-charge
- Exciton-exciton

Exciton-Charge Interaction: Neutral and Charged Exictons

Nature Materials 12, 207-211 (2013)

Nature communication, Xiaodong Xu' groupd

Trions have a binding energy estimated to be ~20meV and much lower efficiency than neutral excitons

Effect of Doping on Luminescence Efficiency

Nano Lett., 2013, 13 (6), pp 2831–2836

The PL intensity and position can be substantially affected by the doping level

Doping Effect: More than Coulomb Scattering

Bandgap Renormalization by Dielectric Screening

The electronic bandgap can be renormalized due to the dielectric screening effect of doping.

Yiling Yu, et al submitted

Bandgap Renormalization by Dielectric Screening

The electronic bandgap can be renormalized due to the dielectric screening effect of substrates (but the value is most likely overestimated).

Change in Exciton Binding Energy by Dielectric Screening

change in binding energy $\Delta E_{\rm ex} = \Delta E_{\rm g}$ - $\Delta E_{\rm opt}$, $\Delta E_{\rm g}$: bandgap renormalization $\Delta E_{\rm opt}$ change in optical bandgap

Change in exciton binding energy: 5- 25 meV

Exciton-Exictons Annihilation

High exciton-exciton annihilation rate!

Exciton-Exicton Annihilation

	k_{ee} (cm ² /s)	τ_r (ns)	τ_{nr} (ns)
Suspended WS ₂	0.3	1	0.76
As-grown WS ₂	0.1	4.5	0.13
Suspended MoS ₂	0.1	28	1
As-grown MoS ₂	0.05	80	0.05

Dependence of exciton-exciton annihilation rate on substrates

Pumping Threshold for Population Inversion

$$\frac{dN}{dt} = -\left(\frac{1}{\tau_r} + \frac{1}{\tau_{nr}}\right)N - k_{ee}N^2 + \alpha I_0$$

The pumping threshold is solely dictated by the exciton-exciton annihilation rate.

Exicton Dynamics: Defect-assisted

Defect-Assisted Electron–Hole Recombination

Exciton Lifetime

	$ au_1$ (ps)	$ au_{2}$ (ps)	$ au_{3}$ (ps)
1 (suspended monolayer)	2.6 ± 0.1 (39%)	74 ± 3 (39%)	850 ± 48 (22%)
2 (supported monolayer)	$3.3 \pm 0.2 (40\%)$	55 ± 3 (38%)	$469 \pm 26 (22\%)$
3 (suspended few-layer)	$2.1 \pm 0.1 \ (40\%)$	34 ± 1 (47%)	708 ± 55 (13%)
4 (supported few-layer)	$1.2 \pm 0.1 (47\%)$	29 ± 2 (41%)	$344 \pm 28 \ (12\%)$
thick crystal	1.8 ± 0.6 (19%) (rise)	20 \pm 2 (81%) (rise)	2626 \pm 192 (100%) (decay)

ACS Nano, 2013, 7 (2), pp 1072–1080

Exciton lifetime in many reports: 1-30ps.

Exciton Lifetime

In most of the current dynamics studies, the process of exciton-exciton annhilation is ignored.

This makes problems in the evaluation for the intrinsic lifetime of excitons

Our result

	k_{ee} (cm ² /s)	τ_r (ns)	τ_{nr} (ns)
Suspended WS ₂	0.3	1	0.76
As-grown WS ₂	0.1	4.5	0.13
Suspended MoS ₂	0.1	28	1
As-grown MoS ₂	0.05	80	0.05

Substrate Effects

Effects of Substrate

> 2 orders of magnitude improvement in the PL in suspended monolayers!

Effect of Trapped Moisture on Hydrophilic Substrates

The doping effect of trapped moisture may cause more than one order of magnitude difference in PL.

Intrinsic Doping Effect of Substrates

mica and Teflon best for WS2 and MoS2

Polystyrene and h-BN best for WSe2.

Substrates may also dope the monolayers, but much weaker than that of trapped moisture (by 2-4 times at maximum)

Defects of Substrates: Effect on Exciton Dynamics

Substrate may facilitate non-radiative lifetime of excitons by providing defects to serve as recombination centers.

Exicton Dynamics: Defect-assisted

Defect-Assisted Electron–Hole Recombination

Index Contrast: Interference Effects

The interference effect of monolayers may affect the PL efficiency depending on the refractive index of the substrates.

Substrate-induced Strains & Dielectric Screening

The substrate-induced strain is small, < 0.3%, affecting the PL efficiency <50%.

The effect of the substrateinduced dielectric screening on the PL < 2 times

Exciton-Dominated Light-Matter Interactions

Layer-dependent Optical Constants

2D MoS2 exhibit an abnormal dependence on the layer number!

Layer-dependent Optical Constants

The layer-dependence of dielectric constant remains similar for the entire visible range.

Physics of Dielectric Constant

$$\varepsilon_{2,L}(\omega) = A_0 J_{cv,L} |U_L(0)|^2$$

 A_0 a constant related with optical matrix element and transition bandwidth, which is layer-independent.

 $J_{cv,L}$ joint density of the initial and final states involved in the transition

CB VB

 $U_L(0)$ the effect of excitons

Excitonic Effects

Conventional semiconductor:

$$\varepsilon_{2,L}(\omega) = A_0 J_{cv,L}$$

Atomic thin MoS₂:
$$\varepsilon_{2,L}(\omega) = A_0 J_{cv,L} \left| U_L(0) \right|^2$$
 Excitonic effect

The excitonic effects dominates over the effect of the band structure.

Exciton Binding Energy and Exciton Radius

The experimental results are consistent with the theoretical calculations in references.

Geometric Confinement

The excition radius in bulk MoS2 is 3.22 nm, close to the thickness of 5L films

Electrically Tunable Light-Matter Interactions: Field-Effect Photonics

The refractive index can be tuned by > 60% with electrical gating!

Doping Effect

Phase Space Filling (Pauli principle)

 $\Delta E = \pi \hbar^2 n/2m$

m: effective mass

n: density of charge

Interchange of charged and neutral

excitons

Dephasing: spectral broadening

Bandgap renormalization

Dielectric screening

scattering

Change in exciton binding energy

Electrically Tunable Light-Matter Interactions

The dominant mechanism: interchange of trions and excitons and spectral broadening (Coulomb Scattering)

Yiling Yu et al, Submitted

Exciton Engineering in Heterostructures

Exicton Dynamics in Heterostructures

Nature Nanotechnology 9, 682-686 (2014)

MoS₂
Nano Lett., 2014, 14 (6), pp 3185–3190

MoSe₂

MoSe₂

HS

WS,

MoS₂

Nature Communications 6, Article number: 6242

Nature Materials 13, 1135–1142 (2014)

Band Structures in MoS2/WS2 Heterostructures

Equally Efficient Interlayer Charge Transfer in Epitaxial and Non-epitaxial MoS2/WS2 Heterostructures

The PL in MoS2/WS2 is two orders of magnitude less!

Efficient Interlayer Exciton Relaxation

- The radiative lifetime of excitons in MoS2 is around 1-5 ps.
- The PL is supressed by 50 -100 times after the heterostructuring.

The interfacial charge transfer is in scale of 10-100 fs!

Equally Efficient Interlayer Charge Transfer in Epitaxial and Non-epitaxial MoS2/WS2 Heterostructures

Efficient interlayer relaxation in non-epitaxial heterostructures!

Thank You!

Layer-dependent Peak Positions: Excitonic Effects

Layer-dependent Exciton Binding Energy

Model 1.conventional quantum confinement, which assumes a constant excitonic binding energy

$$E = E_{g} + \pi^{2}\hbar^{2}/(2m_{eff}L^{2})$$

Model 2 based on quantum confinement in fractional space. It assumes the excitonic binding energy varies.